
Abstract — A procedure to reconstruct a discrete 
approximation of a source object with finite depth from its 
image generated by a Veselago-Pendry superlens, is presented. 
It is validated by considering the simple case of an array of 
discrete field sources placed along a line normal to the lens.   

I. INTRODUCTION 
The Veselago-Pendry superlens can image arbitrary 

field distributions in a plane parallel to the superlens with 
subwavelength accuracy [1]. Such scenarios, typical in 
photolithography, have been discussed in the literature 
[2],[3]. However, little information is available on the 
superlens imaging and reconstruction of field source 
distributions which possess a finite depth (normal to the lens 
surface). In this paper we derive an algorithm for 
reconstructing a field source distribution that extends in 
normal direction. 

There exist a number of inverse scattering algorithms 
that aim at reconstructing an unknown source distribution 
from far-field information collected in the space 
surrounding the source. The superlens image reconstruction 
is different from these situations in two respects. Firstly, the 
image contains both near- and far-field information by 
virtue of the evanescent amplification of the superlens. 
Secondly, the image field is usually sampled in a plane 
rather than on a closed surface surrounding the sources. 

Note that we will not address the problem of realizing a 
superlens with negative refractive index n = -1 and free 
space wave impedance η0. We simply consider that the lens 
has the ideal properties assumed by Veselago [1] and 
Pendry [2] in their classical papers, and that all its 
properties are linear. Reality effects can be introduced at a 
later stage by an appropriate modification of the spatial 
Fourier spectrum of the image [4].  

In this letter we discuss the simple case of a 
monochromatic source field distribution located on a line 
normal to the lens (see Fig. 1). To formulate a discrete 
reconstruction algorithm we assume that the source field 
distribution is discretized into square elements or pixels, 
within which the electric field is constant and has an 
amplitude coefficient am, where m is the index of the source 
elements of size dx’ x dy’. We further assume, for 
simplicity, that all elements of the source distribution are in 
phase. The algorithm then reconstructs the coefficients am of 
the discrete source distribution from its field in the image 
plane.  We first compute the resulting image field using 
spatial Fourier decomposition of the source fields in y-
direction and transferring each spectral component to the 

image plane using the transfer function of the waveguide 
model [4], then reconstruct the source coefficients using the 
inverse algorithm. The result should ideally yield the 
original source distribution.    

II. MATHEMATICAL FORMULATION 
Fig. 1 shows the geometry of a superlens of thickness d 

and the positions of the source object and the image plane. 
The lens of thickness d can potentially image objects up to a 
distance d behind it.  For simplicity, and without loss of 
generality, we first assume that the source distribution, 
shown in Fig. 1, is uniform in the z-direction and 
periodically repeated in the transverse direction (y-
direction) with a periodicity s. This allows us to treat the 
problem in terms of an equivalent one-dimensional spectral 
waveguide model [4]. The distance s is chosen to be larger 
than the extent of the object and the line of discrete source 
elements is assumed to be inside the s x d box.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Superlens imaging of a discretized source distribution with finite 
extent normal to the lens. The structure has a periodicity s in y-direction 
and is independent of z. We want to recover the amplitude coefficients of 
the source distribution from the field recorded on the image side. 
 
The origin of the field and source coordinates is located in 
the center of the superlens slab. The steady-state electric 
field in the half-space x>d/2 can be expressed as the sum of 
the weighted discrete Green’s functions gm(x-xm’,y-y’), 
which are the electric fields produced by monochromatic 
unit field sources located at xm’,y’. The total image field in 
the half-space x>d/2 due to the array of sources is given by  
  
                     (1) 
 
where am are the amplitude coefficients of the field source 
elements. The Green’s function gm is the sum of the spatial 
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Fourier components of the m-th source transmitted by the 
superlens; it can be computed either analytically or 
numerically.  The numerically computed Green’s functions 
will be approximations of their ideal counterparts, but will 
be more realistic since they contain only the first few 
spectral terms.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Magnitude of the Green’s function g in the half space x > d/2 for a 
pixel located at d/2 behind the front face of the lens and at the center of 

the unit cell on the y-axis. (a) shows the amplitudes plotted on a log scale 
and (b) is plotted on a linear scale.  

 
Fig. 2 shows the Green’s function for a single source 

pixel located at x’=-d (d/2 behind the lens front surface). 
The free-space wavelength emitted by the source is 400 nm 
(f = 750 THz). The lens has a thickness d = 80nm (a period 
of s = 100nm = λ0/4 has been chosen arbitrarily). The ideal 
Veselago-Pendry lens has the property that it can pass with 
full fidelity all the spatial harmonics of a given object field 
[4]. The magnitude of the image field strongly depends on 
the distance of the source from the lens. The field produced 
by a source farther from the lens is dwarfed by that 
produced by a source closer to the lens. 

To determine the unknown source coefficients in the 
expression for the total field (1) we need to solve the 
inverse problem.  Knowing the Green’s functions produced 
by unit field sources, we can recover the unknown 
coefficients am by projecting the known image field function 
E(x,y) onto the manifold of the known Green’s functions 
which we consider to be the basis functions of the function 
space. Let O represent the vector of projections of E(x,y) 
onto the set of Green’s functions with m = 1,2…M. Each 
projection component Om is the inner product of E(x,y) and 
gm :  

                   (2) 
 
If we express E(x,y) by (1) and write the expression for the 
vector of projections in matrix form, we obtain 
where G is an M x M square matrix with elements 

>=< jiij ggG , , i = 1..M and j= 1..M, and A is the vector of 
unknown coefficients am which can be obtained by inverting 
the matrix G.  

III. RESULTS AND DISCUSSIONS 

Consider the series of discrete source elements shown in 
Fig. 1. The image field is generated and then the inversion 
procedure is used to assess the accuracy of the scheme.  
While calculating the Green’s functions and the inversion, 
we note that it is not essential to sample the image field in 
the entire volume of the image space. It is sufficient to 

sample it only in a single plane parallel to the lens, since the 
field on the image side can be reconstructed from it, 
provided that both magnitude and phase of the spectral 
components are known in that plane. 

The inversion procedure was implemented in 
Mathematica. A double precision and pseudoinversion was 
insufficient due to the high condition number of the Green’s 
matrix. However, switching to a higher precision Green’s 
matrix yielded satisfactory results. In Fig. 3 a series of 
random amplitude sources lying on a line normal to the lens 
was used to generate an image. The image at d/2 behind the 
lens was then inverted to recover the amplitudes of the 
source elements. By moving the sampling plane closer to 
the lens, the accuracy of the inversion could be increased. In 
Fig. 4 the source amplitude is sinusoidal. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. The recovered 28 sources of random amplitude spread evenly on a 
line normal to the lens over the distance –d/2<x’<-d.  

 
 

 
 
 
 
 
 
 
 
 

Fig.4. The recovered sources having a sinusoidal amplitude distribution 
along the x-axis, located between –d/2<x’<-3d/2 for 25 and 50 sources. 

IV. CONCLUSION 
We have derived and tested an inversion algorithm that 
reconstructs a source distribution with a finite extent normal 
to a superlens from its image. It yields acceptable results for 
source distributions that extend up to half the lens thickness 
from its surface. These results suggest that it may be 
possible to reconstruct sub-wavelength three-dimensional 
objects from their superlens image. 
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